Program	me BS Computational Statistics and Data Analytics	Course Code	CSTA- 306	Credit Hours	3
Course Title Image Analysis					
	Cours	e Introduction			
and enhanc segmentatio remote sense	provides a deep dive into the theory ement. Students will explore tech n, gaining the skills to extract mean ing, and multimedia. Hands-on p n this essential field of computer vis	hniques such as f ningful information projects and real-v	iltering, edg	ge detection, and es in fields like med	image licine,
	Learn	ing Outcomes			
 Get Have Have Have 	of this course, students will be a familiar with both the theoretica re described the foundation of im re implemented common method lerstand the geometric relationsh	ll and practical asp age formation, m ls for robust image	easurement e matching nages and	t, and analysis. and alignment. the 3D world.	
	Course Content		As	signments/Readi	ngs
Week 1	Unit – I Digital Image Fundamentals: Introduction to digital images: representation, sampling, and quantization Unit – II Image acquisition process and basic relationships between pixels				
Week 2	Unit – III Understanding imaging geomet in digital image processing Unit – IV Image Transforms: Introduction to image transfor transform (DFT) and its ap processing	ırier			
Week 3	Unit – V Discrete cosine transform (DCT) and its use in image compression and transformation Unit – VI Overview of Walsh and Hadamard Transform, Hotelling Transform				
Week 4	Unit – VII Overview of Walsh transforms Unit – VIII Importance of Walsh transforms in image processing				
Week 5	Unit – IX Overview of Hadamard transforms				

	Unit – X				
	Importance of Hadmard transforms in image				
	processing				
	Unit – XI				
Week 6	Introduction to the Hotelling transform				
	Unit – XII				
	Application of Hotelling transform in image analysis				
	Unit – XIII				
	Image Enhancement:				
	Techniques for enhancing images in both spatial and				
Week 7	frequency domains				
	Unit – XIV				
	Methods for improving image quality, contrast, and				
	sharpness				
	Unit – XV				
	Image Smoothing and Sharpening:				
	Understanding image smoothing techniques to				
Week 8	reduce noise and blur				
	Unit – XVI				
	Image sharpening methods for enhancing edge				
	details and improving image clarity				
	Unit – XVII				
	Image Restoration:				
	Introduction to image restoration techniques and				
Week 9	degradation models				
	Unit – XVIII				
	Understanding inverse filtering and its limitations in				
	image restoration				
	Unit – XIX				
	Wiener Filter:				
	Overview of the Wiener filter and its applications in				
Week 10	image restoration and noise reduction				
	Unit – XX				
	Understanding the principles behind adaptive				
	Wiener filtering for varying noise levels				
	Unit – XXI				
	Color and Pseudo-Color Image Processing:				
	Introduction to color models and color spaces in				
Week 11	digital image processing				
	Unit – XXII				
	Techniques for color enhancement and pseudo-				
	coloring for visualization purposes				
	Unit – XXIII				
Week 12					
Week 12	Image Segmentation:				
	Understanding image segmentation				

	Unit – XXIV		
	Importance of image segmentation in image analysis		
	Unit – XXV		
	Techniques for detecting discontinuities and		
Week 13	boundaries in images		
Week 15	Unit – XXVI		
	Techniques for detecting discontinuities and		
	boundaries in images Continued		
	Unit – XXVII		
	Thresholding, Region-Oriented Segmentation:		
	Overview of thresholding methods for image		
Week 14	segmentation based on pixel intensity		
	Unit – XXVIII		
	Region-oriented segmentation techniques for		
	partitioning images into meaningful regions		
	Unit – XXIX		
	Motion Analysis in Segmentation:		
	Understanding the use of motion analysis techniques		
Week 15	for dynamic image segmentation		
	Unit – XXX		
	Applications of motion detection and tracking in		
	video processing and surveillance systems		
	Unit – XXXI		
	Advanced Topics in Image Segmentation:		
	Exploration of advanced segmentation algorithms		
Week 16	based on machine learning and deep learning		
	approaches		
	Unit – XXXII		
	Discussion of recent developments and applications		
	in image segmentation techniques		
Textbooks and Reading Material			
Torret Doole			

Text Book

1. Szeliski, R. (2010). *Computer vision: algorithms and applications*. Springer Science & Business Media.

Suggested Readings

- 1. Forsyth, D. A., & Ponce, J. (2003). *Computer vision: a modern approach*, 17, 21-48.
- 2. Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The elements of statistical learning: data mining, inference, and prediction*. Springer Science & Business Media.

Teaching Learning Strategies

Class Lecture method, which includes seminars, discussions, assignments and projects. (Audio-visual tools are used where necessary)

Assignments: Types and Number with Calendar

According to the choice of respective teacher.						
Assessment						
Sr. No.	Elements	Weightage	Details			
1.	Midterm Assessment	35%	It takes place at the mid-point of the semester.			
2.	Formative Assessment	25%	It is continuous assessment. It includes: Classroom participation, attendance, assignments, and presentations, homework, attitude and behavior, hands-on-activities, short tests, quizzes etc.			
3.	Final Assessment	40%	It takes place at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.			